ISOENZYME COMPOSITION OF SOLUBLE MALATE

DEHYDROGENASE FROM COTTON SEEDS

K. Davranov, M. A. Kuchenkova, and P. Kh. Yuldashev

The presence of three forms of soluble malate dehydrogenase (MDH) in dormant seeds of the cotton plant <u>Gossipium hirsutum</u> has been reported previously [1]. We have studied the isoenzyme composition of the soluble MDH from cotton seeds of variety 108-F.

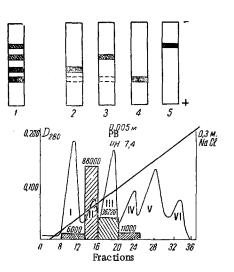


Fig. 1. Zymograms of the isoenzymes of the malate dehydrogenase of the combined fraction (1) and of the fractions separated on a column of DEAE-cellulose (2-5).

An acetone powder was extracted with 0.005 M phosph-
ate buffer, pH 7.4 (1:10) containing 0.005 M of EDTA and
0.005 M of cysteine. The extract was centrifuged at 18,000
rpm for 30 min. The supernatant liquid was salted out with
95% (NH ₄) ₂ SO ₄ . The precipitate was dissolved in the mini-
mum amount of 0.005 M phosphate buffer (pH 7.4) and was
desalted on a column (2.5 \times 45 cm) of Sephadex G-25. The
desalted protein solution was passed through a column of
DEAE-cellulose (1.5 \times 30 cm, rate of elution 18 ml/h)
equilibrated with the above-mentioned buffer. The protein
was eluted from the column with a linear gradient of from
0 to 0.3 M NaCl (Fig. 1). The fractions corresponding to
the individual peaks were combined and their protein con-
tents were determined by the Warburg-Christian method
[2] and their enzymatic activity by a spectrophotometric
method [3]. Information on purification is given in Table 1.

TABLE 1.

The original extract and the fractions obtained after ion-exchange chromatography were studied by disc electrophoresis with the determination of the localization of the activity in the gel by the tetrazolium method [4]. The original extract produced four colored zones, while the active frac-

Stage of purification	Total Protein volume, content, ml mg/ml	Protein	Activity		Yield on activity, %	Degree of purification
		Specific, µmole NAD/ min/mg of protein	total			
Initial extract Precipitation and de- salting on Seph.	4	69	205 7	567732	_	_
G-25 Separation on DEAE- cellulose	5	34	3294	559980	98	1,5
I II III IV V VI	27 18 27 22 54 49	0,2 0,15 0,18 0,14 0,16 0,16	6000 88000 39220 11000 —	32400 316800 176029,2 33880	$ \begin{array}{c} 5,7\\ 42\\ 31,4\\ 6,04\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$ \begin{array}{c c} 3 \\ 44 \\ 18 \\ 5 \\ \\ \\ \\ \\ \\ \\ $

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 645-647, September-October, 1970. Original article submitted July 2, 1970.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

UDC 577.158.4

tions after separation on DEAE-cellulose each gave a single colored zone.

Thus, on the basis of the results of electrophoresis and ion-exchange chromatography, dormant cotton seeds of variety 108-F contain four active forms of soluble MDH.

LITERATURE CITED

- 1. R. Fasella, F. Vossa, S. Turano, and A. Rossi-Tanelli, Enzymol., 185 (1966).
- 2. O. Warburg and W. Christian, Biochem. Z., 310, 384 (1941-1942).
- 3. Z. S. Bronovitskaya and V. L. Kretovich, Dokl. Akad. Nauk SSSR, 6, 180 (1968).
- 4. T. A. Severnaya, M. K. Gil'manov, V. I. Yakovleva, and V. L. Kretovich, Dokl. Akad. Nauk SSSR, <u>181</u>, No. 5 (1968).